BBA 73648

Nanomolar concentrations of Cd²⁺ inhibit Ca²⁺ transport systems in plasma membranes and intracellular Ca²⁺ stores in intestinal epithelium

P.M. Verbost a, M.H.M.N. Senden a and C.H. van Os b

^a Department of Zoology II, University of Nijmegen, Nijmegen (The Netherlands) and ^b Department of Physiology, University of Nijmegen, Nijmegen (The Netherlands)

(Received 23 March 1987)

Key words: Cadmium ion; Calcium ion transport; Plasma membrane; Endoplasmic reticulum; Mitochondrion; (Rat duodenum)

The interactions of Cd^{2+} with active Ca^{2+} transport systems in rat intestinal epithelial cells have been investigated. ATP-driven Ca^{2+} transport in basolateral plasma membrane vesicles was inhibited by Cd^{2+} with an I_{50} value of 1.6 nM free Cd^{2+} at 1 μ M free Ca^{2+} , using EGTA and HEEDTA to buffer Ca^{2+} and Cd^{2+} concentrations, respectively. The inhibition was competitive in nature since the K_m value of Ca^{2+} increased with increasing Cd^{2+} concentrations while the V_{max} remained constant. Cd^{2+} had similar effects on ATP-dependent Ca^{2+} uptake by permeabilized enterocytes, indicating that non-mitochondrial and mitochondrial Ca^{2+} stores are also inhibited by nanomolar concentrations of Cd^{2+} . We conclude that ATP-driven Ca^{2+} transport systems are the most sensitive elements so far reported in Cd^{2+} intoxication.

1. Introduction

Exposure to Cd²⁺ results in disturbances in Ca²⁺ homeostasis of the body. The most pronounced effect is skeletal deformation due to Ca²⁺ mobilization from bone as a consequence of decreased active Ca²⁺ absorption in the intestine [1-3]. Active transcellular Ca²⁺ transport consists in passive Ca²⁺ entry across the brush-border membrane, diffusion of Ca²⁺ through the cytosol mediated by a vitamin D-dependent Ca²⁺ binding protein (CaBP) and ATP-driven efflux across the

basolateral plasma membrane (for review, see Ref. 4). Ca2+ influx into intestinal cells is inhibited by Cd2+ but a rather low Cd2+ sensitivity was observed [5,6]. It was also demonstrated that Cd2+ entered the enterocytes [6]. Binding of Cd2+ to Ca²⁺ binding protein with similar affinity as Ca²⁺ has been reported [7,8]. In addition, Cd²⁺ reduced Ca²⁺ binding protein concentrations in chick duodenum [8]. Information on Cd2+ interference with the Ca²⁺-pumping ATPase in the basolateral membrane is not available. It is also unknown whether Cd2+ interacts with non-mitochondrial or mitochondrial Ca2+ stores in enterocytes. Therefore, the effect of Cd2+ on ATP-dependent Ca2+ transport in plasma membrane and intracellular stores was studied. Since Cd2+ is also very nephrotoxic the renal plasma membrane Ca²⁺ pump was included in our study. We report here an unanticipated high affinity for Cd2+ of ATPdependent Ca2+ transport systems in both the intestine and kidney.

Abbreviations: EGTA, ethylene glycol bis(β -aminoethyl ether)-N, N'-tetraacetic acid; HEEDTA, N-(2-hydroxyethyl)-ethylenediamine-N, N', N'-triacetic acid; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; DDT, dithiothreitol.

Correspondence: P.M. Verbost, Department of Zoology II, University of Nijmegen, Toernooiveld 25, 6525 ED Nijmegen, The Netherlands.

Materials and Methods

2.1. Plasma membrane preparations

Male Wistar rats (180–200 g) were killed by cervical dislocation. The first 15 cm of the small intestine was removed and rinsed with ice-cold saline containing 1 mM dithiothreitol. Isolation of enterocytes and basolateral plasma membrane vesicles have been described in detail [9]. Kidneys from three male rats were removed and decapsulated. Cortical slices were homogenized and basolateral membranes were purified as previously described [10]. The purification factors for (Na⁺ + K⁺)-ATPase in basolateral membrane preparations of rat duodenum and renal cortex were similar to those previously reported [9,10].

2.2. Preparation of permeabilized enterocytes

Isolation and permeabilization of duodenal enterocytes was done as before with the following modifications [13]. Everted pieces of rat duodenum were tied onto rods and vibrated for 20 min in 150 mM NaCl containing 2.5 mM EDTA. Cell aggregates were collected at $200 \times g \times 5$ min and incubated for 30 min at 25°C in a shaking waterbath in a medium containing (mM): 120 NaCl, 4.8 KCl, 1.2 KH₂PO₄, 10 Hepes, 10 EGTA, 15 glucose, 1 dithiothreitol, 0.1% (w/w) bovine serum albumin and 1 mg/ml hyaluronidase. The suspension was gassed with 100% O2. Saponin was used to permeabilize the isolated cells as previously described [13]. Trypan blue (0.5%) tests indicated 80% leaky cells after 10 min incubation at 25°C with 30 µg/ml saponin.

2.3. 45Ca uptake experiments

ATP-dependent Ca^{2+} uptake in basolateral membrane vesicles was done as described previously [9–11]. The final concentrations during uptake experiments were (mM): 150 KCl, 20 Hepes-Tris (pH 7.4), no ATP or 3 ATP, 0.5 EGTA, 0.5 HEEDTA, an amount of calculated $CaCl_2$ to bring the free Ca^{2+} concentration to the desired level (0.025 to 10 μ M) and a calculated amount of MgCl₂ to keep the free Mg²⁺ concentration fixed at 1.5 mM. The free Ca^{2+} and Mg²⁺ concentrations were calculated as previously described [10]. The medium contained 3 μ Ci/ml ⁴⁵Ca. To study the effect of Cd^{2+} on ATP-dependent Ca^{2+} up-

take the free Cd²⁺ concentration was varied between 10⁻¹⁰ and 10⁻⁸ M. The free Cd²⁺ concentration was calculated as described by Van Heeswijk et al. [10], using the following binding constants of Cd²⁺ for EGTA, HEEDTA, and ATP: 14.6, 13.0 [12] and 5.43 (log values). The binding constant of Cd²⁺ for ATP was determined by titration using a Cd²⁺ selectrode (Radiometer, F3000). The ⁴⁵Ca uptake was stopped by adding aliquots to 1 ml ice-cold stop solution (uptake medium + 0.1 mM LaCl₃). Membranes were collected by rapid filtration.

ATP-dependent Ca²⁺ uptake by permeabilized enterocytes was measured as recently described [13]. The final concentrations during uptake experiments were (mM): 120 KCl, 1.2 KH₂PO₄, 5 pyruvate, 5 succinate, 0.5 EGTA, 0.5 HEEDTA, zero or 10 ATP, 10 creatine phosphate, 10 U/ml creatine kinase, 5 µCi/ml ⁴⁵Ca and pH 7.4 (adjusted with KOH). The free Ca²⁺ concentrations studied were 0.1 and 1.0 µM. The free Mg²⁺ concentration was kept at 1.5 mM. The free Cd2+ concentration was varied between 10^{-10} and 10^{-8} M and calculated as above. The 45 Ca uptake was stopped by adding aliquots to 1 ml ice-cold stop solution (150 mM KCl, 1 mM MgCl₂, 20 mM Hepes-Tris (pH 7.4) and 1 mM EGTA). Cells were collected by rapid filtration (ME25, 0.45 µm).

2.4. Materials

MgATP, oligomycin, antimycin, saponin, EGTA, HEEDTA, dithiothreitol were from Sigma (St. Louis, MO). ⁴⁵CaCl₂ (±10 mCi/mg) was purchased from New England Nuclear (Dreieich, F.R.G.). All other chemicals were analytical grade and obtained from commercial suppliers.

3. Results

3.1. Effect of Cd^{2+} on the plasma membrane Ca^{2+} -pump

ATP-dependent Ca^{2+} uptake in basolateral membrane vesicles from rat duodenum was extremely sensitive to Cd^{2+} as shown in Fig. 1. An apparent I_{50} value of 1.6 nM free Cd^{2+} at 1 μ M free Ca^{2+} can be derived from the data in Fig. 1. A further kinetic analysis of Cd^{2+} inhibition of ATP-dependent Ca^{2+} transport is shown in Fig. 2. The inhibition by Cd^{2+} is clearly competitive since

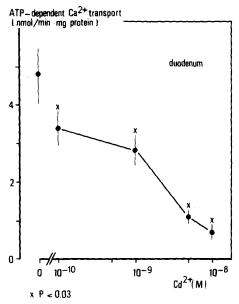


Fig. 1. Inhibition by ${\rm Cd}^{2+}$ of ATP-dependent ${\rm Ca}^{2+}$ transport in basolateral plasma membrane vesicles of rat duodenum (BLMV). The points represent mean values \pm S.E. of 1 min uptakes at 1 μ M free ${\rm Ca}^{2+}$ from at least five experiments in duplicate. Significance was tested with Mann-Whitney U-test (P < 0.05).

the affinity for Ca^{2+} decreased with increasing Cd^{2+} concentrations while the $V_{\rm max}$ is not influenced (Table I).

To find out whether the high affinity inhibition of Ca²⁺-pumping ATPase by Cd²⁺ is typical for

TABLE I INFLUENCE OF Cd^{2+} ON KINETIC PARAMETERS OF ATP-DEPENDENT Ca^{2+} TRANSPORT

 $K_{\rm m}$ and $V_{\rm max}$ values were derived from Eadie-Hofstee plots; free Ca²⁺-concentrations were varied around the apparent $K_{\rm m}$ values

Cd ²⁺ concentration	K _m a	V _{max} b	n
0 (control)	0.07 ± 0.01	4.60 ± 0.40	12
10^{-9} M	0.36 ± 0.01 *	4.60 ± 0.57	5
5·10 ⁻⁹ M	2.25 ± 0.39 *	4.20 ± 0.96	5

^a K_m in μ M Ca²⁺.

the intestinal Ca^{2+} -pump, we tested the effect of Cd^{2+} on the Ca^{2+} -pump in renal basolateral membranes. The results are shown in Fig. 3. As in Fig. 1 the renal Ca^{2+} -pump is also inhibited by Cd^{2+} with an apparent I_{50} value of 1.8 nM at 1 μ M free Ca^{2+} . Since one of us (P.M.V.) found an identical I_{50} value for Cd^{2+} inhibition of ATP-driven Ca^{2+} uptake in a plasma membrane preparation of trout gill, these results suggest that the ubiquitous plasma membrane Ca^{2+} -pump has an affinity for Cd^{2+} two orders of magnitude higher than for Ca^{2+} .

3.2. Cd^{2+} and intracellular Ca^{2+} stores

It was recently demonstrated that permeabi-

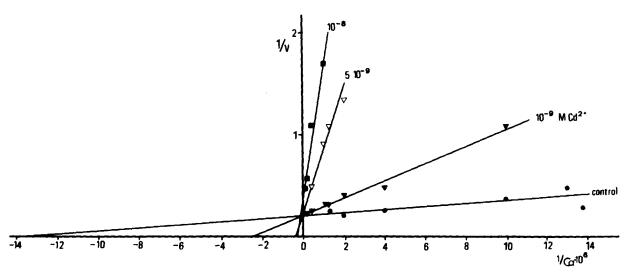


Fig. 2. Lineweaver-Burk plots of Ca²⁺ concentration dependence of ATP-dependent Ca²⁺ transport in rat duodenal BLM vesicles at different free Cd²⁺ concentrations. The points represent mean values of 1 min uptakes from five experiments.

b V_{max} in nmol Ca²⁺/min per mg protein.

^{*} P < 0.05

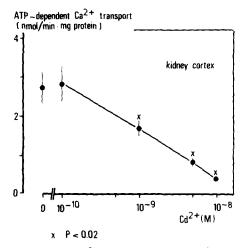


Fig. 3. Inhibition by Cd²⁺ of ATP-dependent Ca²⁺ transport in basolateral plasma membrane vesicles from rat renal cortex.

Conditions are as in Fig. 1.

lized enterocytes accumulate Ca^{2+} when provided with ATP [13–15]. Discrimination between ATP-dependent Ca^{2+} uptake by mitochondrial and non-mitochondrial systems was made on the basis of the apparent half maximal activation Ca^{2+} concentrations of the respective systems. At 1.0 μ M free Ca^{2+} mitochondrial Ca^{2+} uptake represented 95% of total ATP-dependent Ca^{2+} uptake

as indicated by a 95% inhibition of uptake by mitochondrial inhibitors; non-mitochondrial uptake accounts for a minor portion of the total ATP-dependent Ca²⁺ uptake as indicated by a 22% inhibition of Ca²⁺ uptake by vanadate. At 0.1 uM free Ca²⁺ the ratio of the mitochondrial/ non-mitochondrial Ca2+ uptake is exactly reversed. Kinetic analysis of non-mitochondrial Ca2+ uptake revealed a $K_{\rm m}$ value of 0.1 μ M Ca²⁺ [13]. Mitochondria started to take up Ca²⁺ at 0.3 µM free Ca²⁺ [13]. Therefore, we used 0.1 μ M and 1.0 μM free Ca2+ to study the effect of Cd2+ on non-mitochondrial and mitochondrial Ca2+ uptake, respectively. The effect of Cd2+ on ATP-dependent Ca2+ uptake by permeabilized enterocytes is shown in Fig. 4. Ca2+ accumulation into intracellular Ca2+ stores is strongly inhibited by Cd^{2+} . The apparent I_{50} values for the nonmitochondrial and mitochondrial Ca2+ stores seem to be 0.2 and 0.5 nM Cd2+, measured at 0.1 and 1.0 µM Ca²⁺, respectively. The 10-fold higher sensitivity of the intracellular Ca²⁺ stores for Cd²⁺ stems from the fact that Ca²⁺ uptake studies into non-mitochondrial and mitochondrial stores were carried out at Ca^{2+} concentrations below V_{max} conditions, whereas with the plasma membranes Cd^{2+} effects were studied under V_{max} conditions.

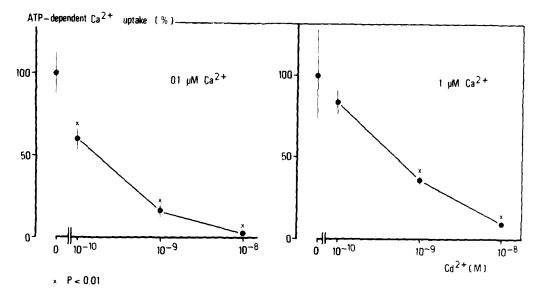


Fig. 4. Inhibition by Cd^{2+} of ATP-dependent Ca^{2+} uptake by permeabilized rat enterocytes. Uptake at 0.1 μ M free Ca^{2+} represents uptake in non-mitochondrial stores. At 1.0 μ M free Ca^{2+} uptake is predominantly into mitochondria. Points represent mean values \pm S.E. of 1 min uptakes from at least four experiments.

4. Discussion

The present in vitro study indicates that Ca²⁺ binding sites on active Ca²⁺ transport systems have an unprecedented high affinity for Cd2+. The affinity for Ca2+ of Ca2+-ATPases in plasma membranes and endoplasmic reticulum is around 100 nM (Refs. 9, 10 and 13, this study Table I), but the I_{50} value for Cd²⁺ is about 1 nM at 1 μ M free Ca²⁺. It is interesting to note that the voltage-dependent Ca2+ channel in synaptosomes has an affinity for Ca^{2+} of 0.3 mM and an I_{50} value for Cd²⁺ around 1 µM [16]. This comparison indicates that extracellular as well as intracellular Ca2+ binding sites on Ca2+ transport systems have affinities for Cd2+ two orders of magnitude higher than for Ca2+. In contrast, Ca2+ binding sites on calmodulin and Ca2+ binding protein have equal affinities for Ca2+ and Cd2+ around 1 μ M [17-19]. This difference in Cd²⁺ affinities of Ca²⁺ binding sites on calmodulin and Ca²⁺-ATPase excludes the possibility that Cd2+ inhibition of ATP-driven Ca2+ transport is realized via Cd²⁺-calmodulin. This difference also indicates that Ca2+ binding sites on calmodulin and Ca2+ binding protein are structurally different from those on Ca2+-ATPases. In one study a non-competitive inhibition of calmodulin-dependent (Ca2+ + Mg²⁺)-ATPase activity of erythrocyte ghost was reported by µmolar concentrations of Cd²⁺ [20]. These authors noted that the free Cd2+ concentration in the assay medium must be significantly lower than the total concentration added, due to complex formation with various anions. In addition, these authors measured ATP-hydrolysis whereas we measured 45Ca translocation. It is entirely possible that Cd²⁺ ions in the nmolar range are transported by the Ca2+-ATPase, while inhibition of ATP-hydrolysis occurs at higher Cd²⁺ concentrations as reported by Åkerman et al. [20]. There is no information on the actual free Cd²⁺ concentration in intestinal and renal cells after Cd²⁺ exposure of rats. It is known that Cd²⁺ induces synthesis of metallothionein (MT) in these cells [7,21]. Metallothioneins are low molecular weight proteins with an exceptionally high content of SH-groups with high affinity for metal ions [22]. It was suggested that metallothioneins protect these cells against toxic effects of Cd2+ [22].

Binding constants for Cd²⁺ to metallothioneins have not been reported so far. Therefore, it remains to be demonstrated whether Ca²⁺-transport ATPases are also inhibited by Cd²⁺ when metallothioneins are present in the cytosol.

The results of the present study suggest that the basolateral Ca²⁺ efflux pathway is the most sensitive element in the transcellular route for Ca2+ in connection with Cd²⁺ intoxication. It is therefore likely that inhibition of intestinal Ca²⁺ absorption is realized via competition between Ca²⁺ and Cd²⁺ for the Ca²⁺ binding site on the Ca²⁺-pumping ATPase. At the same time Ca2+ uptake into intracellular Ca2+ stores is inhibited. Both events will eventually result in increased free cytosolic Ca²⁺ levels. Intestinal and renal cells employ Ca²⁺ as an intracellular messenger [4,23]. An increase in cytosolic Ca2+ reduces intestinal salt and water absorption [23]. Since Cd²⁺ also inhibits water transport in rat duodenum [6], it is possible that an increase in cell Ca2+ mediates Cd2+ inhibition of fluid absorption. For renal cells it was recently demonstrated that cell Ca2+ increased after Cd2+ administration to rats [24]. Also this effect of Cd²⁺ can be explained by Cd²⁺ interference with Ca²⁺-pumping ATPases.

In conclusion, Cd²⁺ administration may upset intracellular Ca²⁺ homeostasis in view of the extreme sensitivity of the Ca²⁺-pumping ATPases in plasma membranes and endoplasmic reticulum.

References

- 1 Ando, M., Sayato, Y., Tonomura, M. and Osawa, T. (1977) Toxicol. Appl. Pharmacol. 39, 321-327
- 2 Ando, M., Sayato, Y. and Osawa, T. (1978) Toxicol. Appl. Pharmacol. 46, 625-632
- 3 Ando, M., Shimiza, M., Sayato, Y., Tanimura, A. and Tobe, M. (1981) Toxicol. Appl. Pharmacol. 61, 297-301
- 4 Van Os, C.H. (1987) Biochim. Biophys. Acta 906, 195-222
- 5 Hamilton, D.L. and Smith, M.W. (1978) Environ. Res. 15, 175-184
- 6 Toraason, M. and Foulkes, E.C. (1984) Toxicol. Appl. Pharmacol. 75, 98-104
- 7 Corradino, R.A. and Fullmer, C.S. (1980) Arch. Biochem. Biophys. 199, 43-50
- 8 Fullmer, C.S., Oku, T. and Wasserman, R.H. (1980) Environ. Res. 22, 386-399
- 9 Ghijsen, W.E.J.M., De Jong, M.D. and Van Os, C.H. (1982) Biochim. Biophys. Acta 689, 327-336
- 10 Van Heeswijk, M.P.E., Geertsen, J.A.M. and Van Os, C.H. (1984) J. Membrane Biol. 79, 19-31

- 11 Van Corven, E.J.J.M., Roche, C. and Van Os, C.H. (1985) Biochim. Biophys. Acta 820, 274–282
- 12 Sillen, L.G. and Martell, A.E. (1964) Stability Constants of Metal Ion Complexes, The Chemical Society, Spec. Publ. No. 17, London
- 13 Van Corven, E.J.J.M., Verbost, P.M., De Jong, M.D. and Van Os, C.H. (1987) Cell Calcium, in the press
- 14 Velasco, G., Shears, S.B., Michell, R.H. and Lazo, P.S. (1986) Biochem. Biophys. Res. Commun. 139, 612-618
- 15 Ilundain, A., O'Brien, J.A., Burton, K.A. and Sepúlveda, F.V. (1987) Biochim. Biophys. Acta 896, 113-116
- 16 Nachsen, D.A. (1984) J. Gen. Physiol. 83, 941-967
- 17 Suzuki, Y., Chao, S.H., Zysk, J.R. and Cheung, W.Y. (1985) Arch. Toxicol. 57, 205-211

- 18 Flik, G., Van de Winkel, J.G.J., Pärt, P., Wendelaar Bonga, S.E. and Lock, R.A.C. (1987) Arch. Toxicol., in the press
- 19 Ingersoll, R.J. and Wasserman, R.H. (1971) J. Biol. Chem. 246, 2808-2814
- 20 Åkerman, K.E.O., Honkaniemi, J., Scott, J.G. and Andersson, L.C. (1985) Biochim. Biophys. Acta 845, 48-53
- 21 Cherian, M.G. (1980) Toxicology 17, 225-231
- 22 Cherian, M.G. and Goyer, R.A. (1978) Life Sci. 23, 1-10
- 23 Donowitz, M. and Welsh, M.J. (1986) Annu. Rev. Physiol. 48, 135-150
- 24 Maitani, T., Watahiki, A. and Suzuki, K.T. (1986) Arch. Toxicol. 58, 136-140